Primary production in coastal wetlands is conventionally thought to be limited by nitrogen. Although the plant community in a pristine salt marsh was found to be limited primarily by nitrogen availability, the bacterial community in the soil was limited by phosphorus. Hence, in coastal wetlands, and possibly in many ecosystems, individual trophic groups may respond differently to nitrogen and phosphorus loading. Phosphorus limitation of the growth of nitrogen-transforming bacteria will affect carbon fixation, storage, and release mediated by plants, a result that has important implications for ecosystem management.

It has been well established that nitrogen is a major nutrient that limits primary production in the coastal zone (1), including in salt marsh ecosystems. However, responses of other ecosystem processes, such as microbial respiration or microbial transformation of nitrogen, have not been as well studied in relation to nitrogen availability. Here, we provide evidence for differential nutrient limitation of autotrophs and microbes in a pristine coastal wetland. These results complicate our ability to predict ecosystem responses to nutrient loadings.

In recent decades, human activities have increased the availability of nutrients such as nitrogen (1) and phosphorus (2). Changes in the nutrient loadings to ecosystems affect carbon and nutrient transformations. For example, experimental nutrient additions are known to affect nitrogen fixation (3) and denitrification (4), the growth efficiency of heterotrophic bacteria (5), and a multitude of ecosystem processes. Predicting the responses of ecosystems to nutrient loading is a challenge, because there are multiple factors that regulate biogeochemical transformations (4, 5). The differential responses to nutrients found among trophic groups and their subsequent interactions limit our predictive capability. For example, nitrogen inputs may accelerate carbon fixation by primary producers, whereas other nutrients like phosphorus may affect carbon turnover by heterotrophs (7).

The extent to which nutrient enrichment in an ecosystem alters biogeochemical processes depends on the relative nutrient status of autotrophs and decomposers and on the elemental ratios in available organic substrates. To investigate how the relative nutrient status of two important trophic groups regulates the dynamics of nitrogen and phosphorus within an ecosystem, we used above-ground biomass (8), bacterial numbers (9), bacterial thymidine incorporation (10), and pore-water phosphatase activity (11) as indicators of macrophyte and bacterial response to fertilization (12) in a pristine coastal salt marsh in South Carolina.

To whom correspondence should be addressed. E-mail: pvs@duke.edu

†‡ Present address: Duke University Wetland Center, Nicholas School of the Environment and Earth Sciences, Box 90333, Duke University, Durham, NC 27708–0333, USA.

*These authors contributed equally to this work.

1Department of Biological Sciences, 2Marine Science Program, University of South Carolina, Columbia, SC 29208, USA. 3Marine Science Department, Coastal Carolina University, Post Office Box 1554, Conway, SC 29526, USA.

Our results are consistent with studies (13, 14) showing that plant primary production in marine systems is limited primarily by nitrogen availability. Macrophyte production responded positively to nitrogen amendments, but not to singular additions of phosphorus, and showed the greatest response when nitrogen and phosphorus were added together (Fig. 1A) (table S1). This result indicates that the macrophytes were limited primarily by nitrogen availability and secondarily by phosphorus availability. However, the pore-water phosphatase activity was lowest in the phosphorus-only treatment, which indicates that some component of the ecosystem was phosphorus limited (Fig. 1B). A direct count of sediment bacteria in the rooting zone showed that the bacterial numbers were higher in phosphorus-treated plots (Fig. 1C). Although plant primary production was stimulated by nitrogen and then phosphorus, bacterial processes did not appear to be stimulated by nitrogen alone. It appeared that, in contrast to the macrophytes, the bacterial community was limited by phosphorus and not by nitrogen.

Phosphorus limitation of bacterial activity was confirmed in a controlled experiment in which sediments from unfertilized marsh plots were amended with either nitrogen or phosphorus in the laboratory. Bacterial production, estimated by thymidine incorporation, was signif-

Fig. 1. Response of ecosystem processes to treatments. Treatment N was nitrogen applied at 30 mol m⁻² year⁻¹ as ammonium nitrate fertilizer; treatment NP, nitrogen plus phosphorus applied at 30 mol m⁻² year⁻¹ as phosphate fertilizer, respectively; treatment P, phosphorus applied at 15 mol m⁻² year⁻¹ (as phosphate fertilizer); and treatment C, control. Means that are not significantly different (α = 0.05) are labeled with the same lower-case letter. (A) Mean (± 1 SE) maximum velocity (V_max) of pore-water phosphatase enzyme activity in the rooting zone (0 to 25 cm) from fertilized plots in a North Inlet marsh and from a contrasting salt marsh (SC) located at the mouth of the urbanized Cooper River estuary in South Carolina. Enzyme activity was assayed spectrophotometrically (with the use of p-nitrophenylphosphate as substrate) (11) in triplicate at in situ pH monthly for 10 months. (B) Effect of nutrient treatments on mean (± 1 SE, n = 3) bacterial abundance in surface sediment (0 to 5 cm).
We found that phosphorus limitation of microbial heterotrophs has the potential to increase the loss of nitrogen and to alter ecosystem-level inputs and outputs of nitrogen. For instance, the potential rate of denitrification as measured by the acetylene block assay (12) was higher when phosphorus availability was limited (Fig. 3A). The potential rate of N₂O flux decreased from 3.3 nmol g⁻¹ h⁻¹ ± 0.07 (SD) when phosphorus was limiting to 0.7 nmol g⁻¹ h⁻¹ ± 0.2 when samples were enriched with 200 μM phosphorus (Fig. 3A). Thus, the higher rate of N₂O production when phosphorus was limiting is indicative of increased loss of nitrogen via the denitrification pathway. Although nitrification may contribute more N₂O, a gaseous intermediate in both nitrification and denitrification pathways (15), than denitrification under aerobic conditions (16), our experiments were carried out under anoxic conditions and at saturating concentrations of nitrate, which should prevent nitrification and its contribution to the measured N₂O production. The greater flux of N₂O under phosphorus-limiting conditions was a function of higher N₂O production and was not because of differences in the rates of conversion of N₂O to N₂. N₂O production, measured without the addition of acetylene, was also higher under phosphorus-limiting conditions (Fig. 3B). Thus, phosphorus limitation of microbial heterotrophs in coastal environments may result in the loss of excess nitrogen through denitrification.

Nutrient additions to marsh sites altered the rates of heterotrophic nitrogen fixation. For example, rates of potential nitrogen fixation (12) were completely inhibited in plots fertilized with nitrogen (Fig. 3C). Phosphorus additions to marsh sites at North Inlet also altered the rates of heterotrophic nitrogen fixation, thus having an indirect effect on primary production. Although phosphorus enrichment of temperate coastal waters enhances nitrogen fixation in the water column (17), phosphorus enrichment of our study site did not stimulate nitrogen fixation. Whereas phosphorus enrichment has been shown to stimulate nitrogen fixation by legumes (18) and cyanobacteria (19), heterotrophic nitrogen fixation in phosphorus-amended plots was inhibited in this coastal wetland (Fig. 3C) (SOM Text).

Our data illustrate the complex interactions among phosphorus, nitrogen, and carbon cycles. Like the field study, marsh sediments taken from control sites that were amended with phosphorus in the laboratory also showed a reduction in heterotrophic nitrogen fixation (Fig. 3, C and D). The phosphorus-mediated reduction in heterotrophic nitrogen fixation observed here is most likely a function of secondary carbon limitation (Fig. 2B). Because nitrogen fixation is energetically expensive and is often limited by the availability of suitable carbon substrates (20), glucose additions to marsh sediments enhanced the endogenous rates of heterotrophic nitrogen fixation (21). In our study too, singular
additions of glucose to homogenized rhizosphere sediments increased heterotrophic nitrogen fixation (Fig. 3D). However, the response was amplified when glucose plus phosphorus were provided, in contrast to the response when phosphorus alone was added (Fig. 3D). This result implies that phosphorus loading to coastal environments can induce carbon limitation for microbial processes.

Simultaneous additions of urea and phosphorus failed to stimulate nitrogen fixation (Fig. 3D), unlike the response to phosphorus plus glucose, probably because hydrolysis of urea yields carbon in a form that does not support microbial growth. However, heterotrophic nitrogen fixation by root-associated diazotrophs was also inhibited when other forms of dissolved organic nitrogen (e.g., amino acids) were provided as a readily bioavailable carbon source (22). There is evidence that bacteria can use amino acids as sources of both carbon and nitrogen (23). Hence, microbial processes such as nitrogen fixation are influenced by the quality of bioavailable carbon, with important implications for the regulation of primary productivity.

Our results in coastal wetlands demonstrate that phosphorus limitation of microbial growth will impact the transformation and availability of nitrogen, which can influence carbon fixation, storage, and release. Whereas nitrogen amendments increased the primary production of marsh macrophytes, simultaneous additions of nitrogen and phosphorus at our site increased soil respiration and carbon turnover (24), because microbial heterotrophs here are limited primarily by phosphorus and secondarily by available carbon. This has important management implications. For example, whereas hypoxic events in temperate coastal waters are often attributed to eutrophication due to nitrogen loading (1), phosphorus enrichment of samples taken from black-water rivers has been shown to increase biological oxygen demand (7), which is consistent with an interpretation of phosphorus limitation of microbial heterotrophs. Hence, it is not prudent to manage ecosystems solely on the nutrient response of primary producers or to ascribe the regulation of ecosystem processes to the availability of a single limiting nutrient.

Although differential nutrient limitation among trophic groups has not been explicitly studied elsewhere, there is evidence from other marine (25, 26), estuarine (27), and tropical (28) and temperate (29) forest ecosystems for phosphorus limitation of heterotrophs and for differential nutrient limitations of autotrophs and microbial heterotrophs in rivers (7). Thus, differential nutrient limitations observed in marshes are also likely to occur in other ecosystems, possibly as a consequence of trophic-level variation in the biomass C:P ratio that varies inversely with specific growth rate (30). Moreover, differential nutrient limitation should affect the balance of energy and elements in living systems, or biological stoichiometry (30), and the development of the ecosystem through competition for nutrient resources (31). Differential nutrient limitation of primary producers and microbial heterotrophs likely represents a consequence of ecosystem development that maximizes overall resource utilization and conservation.

Our results in coastal wetlands demonstrate that simultaneous additions of urea and phosphorus increased heterotrophic nitrogen fixation (Fig. 3D). This result implies that phosphorus loading to coastal environments can induce carbon limitation for microbial processes.

References and Notes
12. Materials and methods are available as supporting material on Science Online.
32. We thank W. H. Schlesinger and C. J. Richardson for their helpful discussions and suggestions and A. J. LeBlanc and his group for technical help. Supported in part by NSF, a National Estuarine Research Reserve System Graduate Research Fellowship to P.V.S. awarded by NOAA’s Office of Ocean and Coastal Resource Management, and the Belle W. Baruch Institute for Marine Biology & Coastal Research.

Supporting Online Material
www.sciencemag.org/cgi/content/full/299/5606/563/DC1 Materials and Methods
SOM Text
Fig. S1
Table S1

The Cellular and Molecular Origins of Beak Morphology

R. A. Schneider and J. A. Helms

Cellular and molecular mechanisms underlying differences in beak morphology likely involve interactions among multiple embryonic populations. We exchanged neural crest cells destined to participate in beak morphogenesis between two anatomically distinct species. Quail neural crest cells produced quail beaks in duck hosts and duck neural crest produced duck bills in quail hosts. These transformations involved morphological changes to non-neural crest host beak tissues. To achieve these changes, donor neural crest cells executed autonomous molecular programs and regulated gene expression in adjacent host tissues. Thus, neural crest cells are a source of molecular information that generates interspecific variation in beak morphology.

Department of Orthopaedic Surgery, 533 Parnassus Avenue, Suite U-453, University of California, San Francisco, CA 94143, USA.

To whom correspondence should be addressed. E-mail: helms@itsa.ucsf.edu